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The 500-MHz 1H-NMR characteristics of the N-linked carbohydrate chain 
Man~1-6[Xyl~1-2]Man/31-4GIcNAc~1-4IFuc~1-3]GIcNAc~1-NAsn of the proteolytic en- 
zyme bromelain (EC 3.4.22.4) from pineapple stem were determined for the 
oligosaccharide-alditol and the glycopeptide, obtained by hydrazinolysis and Pronase 
digestion, respectively. The 1H-NMR structural-reporter-groups of the c~(1-3)-Iinked 
fucose residue form unique sets of data for the alditol as well as for the glycopeptide. 

The structural characterization of the N-linked carbohydrate chain(s) of the p roteolytic 
enzyme bromelain (EC 3.4.22.4) from pineapple stem has been the subject of several in- 
vestigations [1-11]. Finally, Ishihara et al. [11] reported the structure 
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in which all the sugars have the D-configuration except fucose. This structure can be ex- 
tended with an additional mannose, c~(1-6)-Iinked to Man-4'. In view of the unusual 
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Figure 1. Carbohydrate structures discussed in this study. 

features of the structure, namely, the occurrence of xylose /3(1-2)-linked to the /3- 
mannose, and in particular, the presence of fucose c~(1-3)-Iinked to the asparagine- 
bound N-acetylglucosamine, the isolation of substantial amounts of this carbohydrate 
chain as an oligosaccharide-alditol and as a glycopeptide was carried out in order to 
establish the 1H-NMR chemical shift values of structural-reporter-groups typical for 
these compounds. 

Materials and Methods 

Commercially available bromelain preparations (Boehringer, Mannheim, W. Germany; 
suspension in ammonium sulfate solution: Sigma Chemical Co., St Louis, MO, USA; ap- 
prox. 50% protein) were purified using Sephadex G400 gel filtration and SE- or SP- 
Sephadex C-50 cation-exchange chromatography [5]. 

For the preparation of neutral hexasaccharide-alditol-[1-2H], compound 1 in Fig. 1, the 
thoroughly dried, purified (Boehringer) bromelain (200 rag) was subjected to the 
hydrazinolysis procedure, including high-voltage paper electrophoresis and Bio-Gel P-4 
fractionation [12441 . Sugar analysis I15] of compound 1 indicated 
Fuc:Xyl:Man:GIcNAc:GIcNAcOL in the molar proportions 0.7 : 0.9 : 2.2 : 1.0 : 0.5. 

For the preparation of glycopeptide 2, 500 mg of the denatured purified glycoprotein 
material (Sigma) were subjected to exhaustive Pronase digestion [14]. After fractionation 
on Bio-Gel P-6 I14], the main glycopeptide fraction was lyophilized. Sugar analysis in- 
dicated Fuc:Xyl:Man:GIcNAc in the molar proportions 1.1 : 1.1 : 2.4 : 2.0 (the N-acetyl- 
glucosamine value has been corrected for non-cleaved GIcNAc-Asn [15]. Methylation 
analysis [16] gave rise to the partially methylated alditol acetates indicative for terminal 
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Figure 2. Structural-reporter-group regions of the 500-MHz ~H-NMR spectrum (2HzO; pZH 7; 27~ of 
oligosaccharide-alditol-[1-ZH] obtained from bromelain. The numbers in the spectrum refer to the corre- 
sponding residues inthe structure.The relative-intensity scale of the N-acetyl and Fuc-CH3 proton regions dif- 
fers from that for other parts of the spectrum, as indicated. 

mannose, xylose and fucose; 2,6-substituted mannose; 4-substituted N-acetylglucos- 
amine; and 3,4-substituted N-acetylglucosamine residues, in the molar ratios 1.1 : 1.1 : 1.2 
: 1.0: 1.0:0.5. Amino acid analysis showed Asp:Glu:Ser:Pro:Gly:GIcNAc in the molar pro- 
portions 2.0 : 1.9 : 0.9:1.1 : 0.7: 2.0, which can accommodate the presence of the reported 
peptide sequence Asn-Asn(carbohydrate)-Glu-Ser [17] in the glycopeptide fraction. Ad- 
ditional amino acids were detected in molar ratios of less than 0.4. Further purifications 
were not carried out. 

For iH-NMR analysis, the carbohydrate samples were repeatedly treated with 2H20 at 
room temperatu re, with intermediate lyophilization, finally using 99.96% 2H20 (Aldrich, 
Milwau kee, Wl, USA). 500-MHz 1H-NMR spectra were obtained using a Bruker WM-500 
spectrometer (SON hf-NMR facility, Department of Biophysical Chemistry, University of 
Nijmegen, The Netherlands) operating in the Fourier transform mode at a probe 
temperature of 27~ [18]. Resolution-enhancement of the spectra was achieved by 
Lorentzian-to-Gaussian transformation [19]. Chemical shifts (6) are expressed in ppm 
downfield from the signal for internal sodium 4,4-dimethyl-4-silapentane4-sulfonate 
(DSS), and measured by reference to internal acetone (8 2.225). 
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Figure 3. Structural-reporter-group regions of the 500-MHz 1H-NMR spectrum (2HgO; pZH 7; 27~ of glycopep- 
tide 2 obtained from bromelain. The numbers in the spectrum refer to the corresponding residues in the 
structure. The relative-intensity scale of the N-acetyl and Fuc-CH3 proton regions differs from that for other 
parts of the spectrum, as indicated. For GIcNAc-1 H-1 only the main signal has been indicated. 

Resulls and Discussion 

The sugar analysis and methylation analysis data of oligosaccharide-alditol 1 and 
glycopeptide 2 (see Fig. 1) indicated that only the reported hexasaccharide was present 
[11]. In none of the bromelain preparations was there any indication of the occurrence 
of a carbohydrate chain extended at Man-4' with an c~(1-6)-Iinked mannose residue. 
Although not discussed here, we have evidence that the hydrazinolysis procedure as 
used for the preparation of compound I results in the removal of the (1-3)-linked fucose 
and degradation of the reducing terminal N-acetylglucosamine residue (see also [9]). 

The 500-MHz 1H-NMR spectra of compounds I and 2, recorded in 2H20, are depicted 
in Figs. 2 and 3, respectively. Relevant NMR parameters of these compounds together 
with NMR data of the reference com pou nds 3-6 (see Fig. 1) [14, 18] are compiled in Table 
1. 
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l a b l e  1. Relevant  XH-NMR charac ter is t i cs  o f  c o n s t i t u e n t  m o n o s a c c h a r i d e s  fo r  the  

o l igosacchar ide-a ld i to l - I1-2H]  1 and  the  g l y c o p e p t i d e  2 de r i ved  f rom b r o m e l a i n ,  to- 

ge the r  w i t h  t hose  o f  re fe rence subs tances  3-6. 

Residue a Reporter group Chemical shift (ppm) b 

3 4 1 5 6 2 
GIcNAc-I-(OL) H-1 

H-2 4.239 4.219 4.189 
H-3 n.d. n.d. 4.315 
NAc 2.057 2.058 2.043 

GIcNAc-2 H-1 4.634 4.718 4.625 
NAc 2.073 2.081 2.066 

Man-3 H-1 4.883 4.884 4.859 
H-2 4.270 4.270 4.262 

Man-4 H-1 5.122 5.124 
H-2 4.039 4.040 

Man-4' H-1 4.913 4.914 4.909 
H-2 3.983 3.982 3.976 

Fuc 6 H-1 4.898 
H-5 4.077 
CHa 1.225 

Fuc 3 H-1 5.017 
H-5 4.232 
CH3 1.202 

Xyl H-1 4.449 4.449 4.453 
H-2 3.377 3.379 3.379 
H-3 3.437 3.453 3.439 
H-5ax 3.250 3.253 3.258 

5.071 5.076 5.121 d 
n.d. c n.d. n.d. 
n.d. n.d. n.d. 

2.014 2.013 2.000 d 

4.618 4.690 4.579 
2.076 2.095 2.066 

4.767 4.770 4.839 
4.080 4.083 4.268 

4.915 4.916 4.913 
3.968 3.967 3.988 

4.877 
4.125 
1.209 

5.136 
4.722 
1.285 

4.474 
3.385 
3.456 
3.273 

a For numbering of monosaccharide residues and complete structures, see Fig. 1. A superscript atthe Fuc re- 
sidue indicates to which position of the adjacent monosaccharide it is linked. 

b Chemical shifts are given in ppm downfield from internal sodium 4, 4-dimethyl-4-silapentane4-sulfonate in 
2HzO (27~ Compounds are represented by shorthand symbolic notation [14,18]: o, GIcNAc; ~,  Man; El, 
Fuc; tl~, Xyl. 

c n.d., not detected. 
d Chemical shift values of the main glycopeptide(s). 

C o m p a r i s o n  of  t he  s t r uc tu ra l - r epo r te r -g roups  of  o l i gosaccha r i de -a ld i t o l  1 (Fig. 1) w i t h  
those  of  the  re fe rence  a ld i to ls  3 and  4 leads to t he  f o l l o w i n g  c o m m e n t s .  The  set of  
s t r uc tu ra l - r epo r t e r -g roup  s ignals  o f  xy lose  in c o m p o u n d  1; namely,  H4 (6 4.453), H-2 (6 
3.379), H-3 (6 3.439) and H-5ax (6 3.258), show  essent ia l l y  t he  same chemica l  sh i f t  va lues 

32 



as those observed for compounds 3 and 4 (Table 1). Apparently, the presence of the 
mannose residue (Man-4) o~(1-3)-lin ked tO Man-:] essentially does not influence the NMR 
parameters of the xylose. As was demonstrated earlier [14], the attachment of a xylose 
residue in the presence of both Man-4' and Man-4 has a distinct influence on the posi- 
tion of the Man-3 H4 signal (Mano~1-6[Manc~l-3]Man/31-4GIcNAct31-4GIcNAcOL, ~ 4.78 
I14]; compared to the values ~ 4.883 and 4.884 for compounds 3 and 4, respectively). Com- 
pared with 3 and 4, the absence of Man4 in compound 1 causes an upfield chemical 
shift effect on Man-31-14 of A8-0.024 ppm relative to the positions in 3 and 4 (compound 
1, 8 4.859). Finally, the position of the Man-4' H-1 and H-2 signals, being typical for a ter- 
minal Manoz(1-6) residue [18], are not influenced by the presence of Man-4 (compare 
compound 1 with 3 and 4). 

The structural-reporter-group signals of the fucose o~(1-3)-Iinked to GIcNAcOL-1 (H-l, 
5.017; H-5, 6 4.232; CH3, c3 1.202) differ drastically from those reported for fucose c~(1-6)- 
linked to GIcNAcOL-1 (H4, 8 4.898; H-5, 8 4.077; CHB, 8 1.225) The chemical shift effects 
on the chitobiitol u nit caused by the c~(1-3)- and a(1-6)-Iinked fucose residues are also dif- 
ferent. This is most pronounced for the N-acetyl signals of GIcNAcOL-1 and GIcNAc-2. 
The presence of o~(1-3)-Iinked fucose in compound 1 leads to upfield shifts of both 
resonances, as compared with their positions in compound 3 (AS -0.014 and -0.007 ppm, 
respectively).l n the case of the o~(1-6)-Iin ked fucose residue in compound 4 the N-acetyl 
signal of GIcNAcOL-1 is hardly affected, whereas the N-acetyl signal of GLcNAc-2 is shift- 
ed downfield 0.008 ppm, when compared to compound 3. The position of H-2 of 
GIcNAcOL-1 is influenced much more in compound 1 than in 4. Compared with com- 
pound 3, in I an upfield shift of 0.050 ppm is observed. In the latter case also GIcNAcOL-1 
H-3 resonates away from the bulk of skeleton protons. The assignment of this signal was 
made by selective irradiation of GIcNAcOL-1 H-2. 

Comparison of the structural-reporter-groups of glycopeptide 2 (Fig. 3) with those of 
the glycopeptides 5 and 6 shows the following features. The set of structural-reporter- 
group signals of c~(1-3)-Iinked fucose in 2, namely, 114 (8 5.136), H-5 ((~ 4.722) and CH3 (~ 
1.285) differ enormously, when compared to the set observed for the o~(1-6)-Iinked 
fucose in 6 (see Table 1). It has to be noted that due to the heterogeneity in the peptide 
backbone, the GIcNAc-l H4 and NAc signals show heterogeneity. The rather downfield 
position of the GIcNAc-1 H-1 signal for glycopeptide 2 at 8 5.121 cannot be attributed 
merely to the influence of the type of fucose linkage, because the peptide moiety can 
considerably influence this chemical shift value [18]. The attachment of fucose at C-3 in- 
stead of C-6 of GIcNAc-1 has also a clear effect on the &-values of GIcNAc-2 H-1 and NAc. 
Compared to compound 5, these values are shifted upfield (A& -0.039 and -0.010 ppm, 
respectively) when fucose is (1-3)-linked to GIcNAc-1, while they are found at downfield 
positions for (1-6)-linked fucose (AS 0.072 and 0.019 ppm, respectively). 

The structural-reporter-groups of xylose (I-14, H-2, H-3, H-5ax) are found at more 
downfield positions for glycopeptide 2, compared to oligosaccharide-alditol 1. The 
chemical shift value of Xyl H-3 was assigned by selective irradiation of H-2. The sensitivi- 
ty of the Man-3 H4 and H-2 structural-reporter-groups to the attachment of xylose 
through a/3(1-2)-linkage mentioned above was also found in glycopeptide 2. These 
signals (8 4.839 and 4.268, respectively) are observed at rather downfield positions when 
compared with those in glycopeptides 5 and 6. 

When comparing oligosaccharide-alditol I with glycopeptide 2, it appears that in 2 the 
chemical shift values of the structural-reporter-groups of fucose occur at welt- 
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pronounced more downfield positions: H4, A~ 0.119 ppm; H-5, A~ 0.490 ppm; and CH3, 
A8 0.083 ppm. It is evident that the alditol chain (GIcNAcOL-1) and the ring structure 
(GIcNAc-1) influence the NMR parameters of fucose quite differently. 
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